
Working Environment 9-1

Chapter 9: Working Environment

This chapter describes the methods used to set up your working environment in
UNIX. Some of these are standard UNIX (e.g., shell and environment
variables), and some are provided and/or customized by the login scripts
provided by FullFUE.

9.1 Special Keys

UNIX has a number of special keys that perform particular functions. Some
important ones are the keys necessary to backspace over a character when
entering a command, to delete the whole line being entered, and to interrupt
execution. These are user-configurable, and have different defaults based on
the shell, the version of UNIX, and your login files. If your system has
FullFUE installed, run

% setup setterm

and these special keys will be set as described in the table:

Name
Control

Char
Function

erase DEL or back-
space

Erase character. Backspace and erase one character
(the key used depends on terminal setting). Some-
times, especially within tcl/tk applications, you
must use <Ctrl-h>.

werase <Ctrl-w> Delete the rightmost word typed in.

kill <Ctrl-x> Kill (erase) the line typed in so far. If you prefer to
use <Ctrl-u> for this function, uncomment the line
#stty kill '^u' in your .login file (C
shell family), or #stty kill in your .pro-
file file (Bourne shell family).

intr <Ctrl-c> Interrupt the program currently running.

9-2 Working Environment

To display the current settings for your terminal, enter:

% stty -a

The output of this command is described in section 9.3 Terminal
Characteristics. If the keys don’t seem to work as described here or you want
to change them, refer to that section.

Tabs

UNIX relies on the hardware tabs of your terminal. If they are not set or if they
are set in an unusual way, displays may appear strange on your terminal. You
can set the tabs manually on your terminal, or you can use the tabs command
to set them. The command with no arguments:

% tabs

will set tabs in the usual UNIX way, 8 spaces apart.

Special Note Regarding Backspace and Delete Keys

In some unusual circumstances of setup and keyboards you may also need to
issue this set of commands to get the backspace key to work as expected:

% stty erase "^?"

% stty intr "^C"

% stty kill "^X"

Sometimes there is trouble with the delete key. Adding the following text to
your .profile or .login will make the key useful:

 case $TERM in

 vt100)

 stty erase \^? ;;

rprnt <Ctrl-r> Reprint the line typed in so far.

flush <Ctrl-o> Stops terminal output until you press a key.

susp <Ctrl-z> Suspend the program currently running and put it in
the background. This does not stop the process!

stop <Ctrl-s> Stop the display. To resume, press the start key
(<Ctrl-q>)

start <Ctrl-q> Start the display after stop.

eof <Ctrl-d> Send the program an end-of-file character.

Name
Control

Char
Function

Working Environment 9-3

 xterm)

 case "`xdpyinfo | grep ‘vendor string’`" in

 DigitalEquipmentCorp) stty erase \^? ;;

 Network\ Computing\ Devices) stty erase \^H ;;

 Silicon\ Graphics) stty erase \^H ;;

 *) stty erase \^H ;;

 esac

 ;;

 esac

Special Note for ksh Users Regarding Arrow Keys

To make the up and down arrow keys work and therefore to enable command
line editing and recall in ksh, include the following lines in your .shrc file
(or .kshrc):

set -o emacs

alias __A=’^P’

alias __D=’^B’

alias __B=’^N’

alias __C=’^F’

Note that the A, D, B, and C are preceded by two underscores, and that you
need to insert an actual control character, not simply carat-P or carat-B. A
control character typically needs to be preceded by a “quoting” character,
which differs from editor to editor.

For this (these) editor(s): ... enter this immediately before the control
character:

vi <Ctrl-v>

emacs <Ctrl-q>

NEdit Use Insert Control Character from the Edit
menu.

We believe this prescription works on all UNIX operating systems, regardless
of how you’re connected (e.g., telnet, xterm).

9-4 Working Environment

9.2 Special Characters (Metacharacters)

9.2.1 Slashes

Backslash

The backslash (\) character is used on the UNIX command line to mask the
special meaning of the character immediately following it (no spaces
inbetween) so that the command interpreter takes the character literally. It is
called a quoting character. For example:

% <command> \<CR>

causes the carriage return (<CR>) to be ignored, allowing you to continue
typing your command on the following line.

Forward Slash

The forward slash (/) character is the symbol for the root directory. In path
names it acts as a separator between directories in the hierarchy, and between
the last directory and the file, if one is specified. For example:

/<dir>/<subdir_1>/.../<subdir_n>/filename

9.2.2 Quotes and Parentheses

Different types of quotes have special meanings:

• Normal single quotes (apostrophes) around a string ('string') tell the
command interpreter to take the string (string) literally.

• Double quotes around a string ("string") also tell the command
interpreter to take the string literally, but allow interpretation of variables
that follow a $ character ($ preceding a variable name outputs the value
of the variable; see section 9.5 Shell Variables and Environment
Variables).

 Section 6.1.2 Command Interpretation by the Shell further explains single
and double quotes in command interpretation, and provides an example.

• Single backquotes around a command string (`string`) tell the
interpreter to run the command(s) in the string, and to use the output of
the command(s) in place of the string itself. This is useful for combining
two commands into one, and for doing iterative tasks within shell scripts
(shell scripts are introduced in section 5.4 Shell Scripts).

Working Environment 9-5

• A string of commands enclosed in parentheses (e.g.,
(<command1>;<command2>)) is run in a subshell. (In section 6.1.1
Programs, Commands and Processes we discuss the difference between
shell commands and non-shell commands. A non-shell command always
runs in a subshell; when enclosed in parentheses, the command starts a
second subshell.)

Command Separators

• The semicolon (;) character separates successive commands on a single
command line. For example,

 % <command1> ; <command2>

 executes <command1>, and when it finishes, <command2> gets
executed.

• The ampersand character (&) is similar to the semicolon (;) but does not
wait for <command1> to finish.

• A double ampersand (&&) runs <command2> only if <command1>
was successful.

• Piping commands is discussed in section 6.4.3 Pipes. A pipe (the pipe
symbol |) tells <command2> to use the output of <command1> as
input.

• A double pipe (||) runs <command2> only if <command1> fails.

Other Special Characters

Special characters such as the asterisk (*), the question mark (?), square
brackets ([...]) are used as wildcards in file expansion (section 7.2.2
Filename Expansion and Wildcard Characters). Note that to prevent file
expansion, these characters must be prefaced by a backslash (\).

Other sets of characters are used in input/output redirection (redirection
metacharacters, see section 6.4.2 Standard Input and Output Redirection), and
in regular expressions (section 6.4.5 Regular Expressions) as wildcards,
delimiters, and other special pattern-matching characters. Refer to these
sections for specific information.

9.3 Terminal Characteristics

You can specify your terminal type to UNIX if the default is not suitable. To
do so, enter the command for the C shell family:

% set term=<termtype>

9-6 Working Environment

or for the Bourne shell family:

$ TERM=<termtype>; export TERM

where <termtype> is the name of a terminal type supported on the system.
vt100, vt220 and xterms are acceptable terminal types. If you always use the
same kind of terminal, you may want to put this command in your .login or
.profile. Note that the standard Fermi files attempt to set this variable
correctly.

In Section 9.1 Special Keys we listed some terminal control functions. Recall
that you can display the settings with the stty command:

% stty -a

The format on each machine is different but should indicate approximately the
same information. The following is the output from a Silicon Graphics
workstation. The settings reflect the FUE defaults.

In this display the second and third lines display the FUE default control
characters. The character ^ indicates the control key (e.g., ^C represents
<CTRL-C>). Your reference books will most likely tell you to delete a
character with the # key and delete a line with the @ key, but this is not
correct under FUE. Use the character indicated as ERASE in the stty output
for single character deletion, and kill for whole line deletion. The Fermi
UNIX Environment defaults for these operations are the DELETE key and
<CTRL-X>, respectively.

You can display a description of all of the options reported by stty with the
command:

% man stty

If you don’t like the FUE defaults, you can also set these functions with the
stty command. The form for setting them is:

% stty <control-char> <c>

speed 9600 baud; line = 1;

intr = ^C; quit = ^; erase = DEL; kill = ^X; eof = ^D; eol
= ^@; swtch = ^Z

lnext = ^V; werase = ^W; rprnt = ^R; flush = ^O; stop = ^S;
start = ^Q

-parenb -parodd cs8 -cstopb hupcl cread clocal -loblk
-tostop

-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr -igncr
icrnl -iuclc

ixon ixany -ixoff

isig icanon -xcase echo echoe echok -echonl -noflsh

opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel
tab3

%

Working Environment 9-7

where:

<control-char> is one of the functions in the table in section 9.1 Special
Keys.

<c> is the representation of the key to be used for that
function. A control character is specified preceded by a
caret: ^x represents <CTRL-X>.

Example:

% stty kill '^y'

There are two special representations: ^? is interpreted as the DELETE key
and ^- is interpreted as undefined. You must include the quotes as shown in
the example so that special characters are not interpreted incorrectly. You must
be careful not to have two functions represented by the same key.

There are many other options that can be set with stty. Others that might be of
interest are echoe which specifies that deleted characters are erased, and
-tabs which specifies that the tab character be translated into the appropriate
number of spaces. Refer to the man pages for more information.

9.4 Information Distribution System: NIS

NIS (Network Information System) is a system that distributes information
throughout a cluster. We define a UNIX cluster as a group of machines that
share both a common password file (or user database), and a common file
system, especially for login directories. NIS is usually used to provide the
common password file, and the common file system is typically NFS or AFS.

NIS is installed on FNALU and many other UNIX clusters at Fermilab. In
order to determine if NIS is running on your system, execute the command:

% domainname

If it returns a value, then NIS is running on your cluster. If no output is
returned, then it is not. Many UNIX clusters use NIS to share a common login
area across several machines. Note that it is possible for both AFS and NIS to
be installed on a system.

9-8 Working Environment

9.5 Shell Variables and Environment Vari-
ables

Every UNIX process runs in a specific environment. An environment consists
of a table of environment variables, each with an assigned value. When you
log in certain login files are executed. They initialize the table holding the
environment variables for the process. (Exactly which files run will be made
clear later in this chapter.) When this file passes the process to the shell, the
table becomes accessible to the shell. When a (parent) process starts up a child
process, the child process is given a copy of the parent process’ table.
Environment variable names are generally given in upper case.

The shell maintains a set of internal variables known as shell variables. These
variables cause the shell to work in a particular way. Shell variables are local
to the shell in which they are defined; they are not available to the parent or
child shells. Shell variable names are generally given in lower case in the C
shell family and upper case in the Bourne shell family.

9.5.1 C Shell Family

The C shell family explicitly distinguishes between shell variables and
environment variables.

Shell Variables

A shell variable is defined by the set command and deleted by the unset
command. The main purpose of your .cshrc file (discussed later in this
chapter) is to define such variables for each process. To define a new variable
or change the value of one that is already defined, enter:

% set <name>=<value>

where <name> is the variable name, and <value> is a character string
that is the value of the variable. If <value> is a list of text strings, use
parentheses around the list when defining the variable, e.g.,

% set name=(<value1> <value2> <value3>)

The set command issued without arguments will display all your shell
variables. You cannot check the value of a particular variable by using set
<name>, omitting =<value> in the command; this will effectively unset
the variable.

To delete, or unset, a shell variable, enter:

% unset <name>

Working Environment 9-9

To use a shell variable in a command, preface it with a dollar sign ($), for
example $<name>. This tells the command interpreter that you want the
variable’s value, not its name, to be used. You can also use ${<name>},
which avoids confusion when concatenated with text.

To see the value of a single variable, use the echo command:

% echo $<name>

If the value is a list, to see the value of the nth string in the list enter:

% echo $<name>[<n>]

The square brackets are required, and there is no space between the name and
the opening bracket.

To prepend or append a value to an existing shell variable, use the following
syntax:

% set name=prepend_value${name}

or

% set <name>=${<name>}<append_value>

Note that when a shell is started up, four important shell variables are
automatically initialized to contain the same values as the corresponding
environment variables. These are user, term, home and path. If any of these are
changed, the corresponding environment variables will also be changed.

Environment Variables

Environment variables are set by the setenv command, and displayed by
the printenv or env commands, or by the echo command as
individual shell variables are. Some environment variables are set by default
(e.g., HOME, PATH).

The formats of the commands are (note the difference between set and
setenv):

% setenv [<NAME> <value>]

% unsetenv <NAME>

where <value> is interpreted as a character string. If the string includes
blanks (i.e., if it encompasses multiple values), enclose the string in double
quotes ("), e.g.,

% setenv NAME "<value1> <value2> ..."

The current environment variable settings can be displayed using the setenv
command with no arguments.

9-10 Working Environment

To use an environment variable in a command, preface it with a dollar sign ($),
for example $NAME. This tells the command interpreter that you want the
variable’s value, not its name, to be used. You can also use ${NAME}, which
avoids confusion when concatenated with text.

To prepend or append a value to an existing environment variable, use the
following syntax:

% setenv <NAME> "<prepend_value>${<NAME>}"

or

% setenv <NAME> "${<NAME>}<append_value>"

If the pre- or appended value is the value of a preexisting environment
variable, enclose the variable name in braces, too, e.g.,

% setenv <NAME> "${<NAME>}${XYZ_VAR}"

Appending and prepending is commonly used with the PATH variable, and a
colon is used as a separator, e.g.,

% setenv PATH "${PATH}:${XYZ_DIR}"

9.5.2 Bourne Shell Family

The Bourne shell family does not really distinguish between shell and
environment variables. When a shell starts up, it reads the information in the
table of environment variables, defines itself a shell variable for each one,
using the same name (also uppercase by convention), and copies the values.
From that point on, the shell only refers to its shell variables. If a change is
made to a shell variable, it must be explicitly “exported” to the corresponding
environment variable in order for any forked subprocesses to see the change.
Recall that shell variables are local to the shell in which they were defined.

Shell variables are defined by assignment statements and are unset by the
unset command. The format of the assignment statement is:

$ NAME=<value>[; export <NAME>]1

where <NAME> is the variable name, and <value> is a character string
that is the value of the variable. There are no spaces around the equal sign (=).
The unset command format is:

$ unset <NAME>

If the string includes blanks (i.e., if it encompasses multiple values), enclose
the string in double quotes, e.g.,

$ NAME="<value1> <value2> ..."

1. In most cases you will want to include the optional part of the command, so that it
reads: NAME=value; export NAME

Working Environment 9-11

The values of all the current variables may be displayed with the set
command.

To use a variable in a command, preface it with a dollar sign ($). This tells the
command interpreter that you want the variable’s value, not its name, to be
used. For example, to see the value of a single variable, enter:

$ echo $<NAME>

You can also use ${<NAME>}, which avoids confusion when concatenated
with text.

To prepend or append a value to an existing environment variable, use the
following syntax:

$ <NAME>=<prepend_value>$<NAME>

or

$ <NAME>=$<NAME><append_value>

Appending and prepending is commonly used with the PATH variable, and a
colon is used as a separator, e.g.,

$ PATH=${PATH}:${XYZ_DIR}

9.6 Some Important Variables

These variables are important for all shells, unless noted otherwise.

DISPLAY

In order to use an X windows application, the environment variable $DISPLAY
must be set correctly. Normally the FullFUE login files set it correctly for you.
Its value is of the form <node:screen.server>. At Fermilab, this will
generally look like <node>.fnal.gov:0.0 where <node> is your
machine name.

To find the node name on a UNIX workstation, run funame -n.

HOME

Your home directory is the top of your personal branch in the file system, and
is usually designated by your username, i.e., /<path>/<username>. The
value of the variable HOME is the pathname of your home directory. The
command cd without arguments always returns you to $HOME. In all shells
except sh, the tilde (~) symbol used in filename expansion, expands to the

9-12 Working Environment

value of this variable. For example ~/myfile is equivalent to
$HOME/myfile. The structure ~<username> is equivalent to the
$HOME directory of user <username>.

PATH

The PATH variable lists the set of directories in which the shell looks to find the
commands that you enter on the command line. (For the C shell family, the
shell variable path takes its value from PATH.) If the path is set incorrectly,
some commands may not be found. If you enter a command with a relative or
absolute pathname, the shell will only search that pathname for it, and not refer
to PATH.

If you include the current working directory, “dot” (.), in your PATH, the shell
will always find your current working directory. This allows you to run
executable files from your current working directory by typing in only the
filename. The FullFUE login files include the dot at the end of the path for
you.

For the C shell family, see the following line in the setpath.csh file:

set path = ($path .)

For the Bourne shell family, see the following line in the setpath.sh file:

PATH = ${PATH}.:

See section 9.8 Tailoring Your Environment for information on these files. If
“dot” is not in your PATH, then in order to execute a file, you need to precede
the executable filename by ./ on the command line. This provides the
current directory pathname explicitly.

LINES and COLUMNS

These variables control the number of lines and columns are displayed on your
screen. The csh family syntax is:

% setenv LINES <n>

% setenv COLUMNS <n>

to set the number of lines or columns to <n>.

For Solaris, use instead:

% stty -rows <n>

% stty -cols <n>

MANPATH

The MANPATH variable lists the set of directories in which the shell looks to
find man pages.

Working Environment 9-13

SHELL

This variable is set to your default shell. Your default shell is determined by
the last field in your password entry (see section 5.1.2 Starting a Shell).

ignoreeof

This shell variable is in csh, tcsh, ksh and bash, but not in sh. When the ignoreeof
variable is set, you cannot exit from the shell using <CTRL-D>, so you cannot
accidentally log out. You must use exit or logout to leave a shell (see
section 3.6 Logging Out).

noclobber

This shell variable is in csh, tcsh, ksh and bash, but not in sh. With the noclobber
variable set, you are prevented from accidentally overwriting a file when you
redirect output. It also prevents you from creating a file when you attempt to
append output to a nonexistent file.

noclobber has no effect on utilities such as cp and mv. It is only useful for
redirection. See sections 6.4.2 Standard Input and Output Redirection and 7.3
Manipulating Files.

9.7 The Alias Command

The alias command allows you to create your own names or abbreviations
for commands by performing string substitution on the command line
according to your specifications. Aliases are recognized only by the shell that
invokes them; spawned processes do not “inherit” them.

Never use the actual command syntax as an alias for itself. If for some reason
an error occurs and the login file which defines your aliases doesn’t run, UNIX
executes the standard version of the command. Normally you’d see an error
message in this case, but what if you miss it? This can be disastrous. For
example, if you are accustomed to using rm (remove file(s), see section 7.3.6
Remove a File: rm) as an alias for rm -i (remove file(s), but prompt for
confirmation), when you run rm you will expect a confirmation prompt. If
the alias didn’t get defined you won’t get a prompt, and you may end up
removing files you need. That is why we suggest rmi as an alias for this
command.

9.7.1 C Shell Family

The format of the alias command is:

9-14 Working Environment

% alias [<new> [<old>]]

When you enter <new> the shell substitutes <old>.

The first example causes ls -l to be executed when the command ll is
entered:

% alias ll ls -l

The next example creates the command dir to list directory files only:

% alias dir 'ls -l | grep ^d'

grep in this case searches for a d in the first column of each line.

9.7.2 Bourne Shell Family

Alias

The alias command is supported by ksh and bash, but not sh. For the
entire Bourne shell family you can use shell functions instead of aliases; we
discuss these below. The format of the alias command is:

% alias <name> = '<alias_contents>'

The first example causes ls -l to be executed when the command ll is
entered:

% alias ll='ls -l'

The next example creates the command dir to list directory files only:

% alias dir='ls -l | grep ^d'

grep in this case searches for a d in the first column of each line.

Shell Functions

The Bourne and Korn shells support shell functions, which are similar to shell
scripts in that they store a series of commands for execution at a later time.
Shell functions are more quickly accessed than scripts because they are stored
in memory instead of a file, and the shell preprocesses them. They can be used
in place of aliases in order to be completely portable between sh, ksh, and bash.

The format for declaring a shell function is:
function-name()

{

 commands

}

Working Environment 9-15

where function-name is what you’ll use on the command line to call the
function. Typically people declare functions in their .profile. You can
include anything you’d include in a shell script. For more information on shell
functions, see a UNIX text.

9.8 Tailoring Your Environment

This section discusses the FUE-customized login files (also called the Fermi
files) used to set up your UNIX environment. Under FullFUE you will
automatically have your own copy of these files in your home directory1. The
default files exist in /usr/local/etc and you can recopy them to your
home directory if you ever need to. Once you understand the functions of the
various files, you can tailor them to suit your tastes.

Many of these files include sample code that you may want to activate. A
pound sign (#) in the first column indicates a comment line. To activate a
command line that’s been “commented out”, remove the #.

9.8.1 C Shell Family Fermi Files

The C shell executes hidden FUE-customized files at various times in your
session. They include the files .cshrc and .login, which you may
choose to further modify.

When you log out, the shell looks for a logout script in your home directory
called .logout. FullFUE does not provide this file, but you can create it
yourself, and it will get run automatically. This file is not required.

As an example, including the clear command in your .logout file
contents clears the screen when you logout.

We also recommend including the kdestroy command in the .logout
file to clear your Kerberos credentials and your AFS tokens, if any.

.cshrc and fermi.cshrc

Upon logging in, the first file to execute is the .cshrc located in your home
directory. The shell also executes this file each time you invoke a new C shell,
for example when you execute a C shell script or otherwise fork a new process.

Your .cshrc file:

• sets up the machine id, type, and operating system

1. Exceptions are the fermi.* and setup.* files which are called directly
from /usr/local/etc.

9-16 Working Environment

• sets up UPS

• establishes a reasonable default path (and therefore PATH) by running
/usr/local/etc/setpath.csh, and MANPATH

• sets fermimail as the standard mail alias

• runs setup shrc

fermi.cshrc also calls /usr/local/etc/local.cshrc which
may set other environment variables.1 You do not have a copy of
fermi.cshrc in your home directory; it is not designed to require
individual customization.

The file .cshrc should contain all your aliases so that child processes have
access to them; many suggested aliases are provided for you to activate, and
you can define your own. You can also set shell variables (noclobber and
ignoreeof are already set for you) and parameters that are local to a shell.

Don’t set any environment variables here. Any changes to their values will
remain after you terminate a forked process, thus changing your standard
environment for the duration of your login session.

.login and fermi.login

The .login file is executed only at login time. After execution of
.cshrc, the .login file located in your home directory is run. The default
.login file first executes the file /usr/local/etc/fermi.login.

fermi.login performs several actions:

• sets umask (default file access permissions) so others can read and
execute but not modify or delete your files

• determines the terminal type (and makes “best effort” at determining
DISPLAY variable)

• sets common terminal characteristics

• sets a host of environment variables

You do not have a copy of fermi.login in your home directory; it is not
designed to require individual customization.

Next, the .login file sets your prompt, and sets the variables history and
savehist. You can edit your .login to modify your path and/or terminal
settings, change the default values of environment variables or create your
own, and/or include commands that you want to execute once, at the beginning
of each session (for instance setup <product> commands).

1. This is a file for things that the local system manager wants to add to the login scripts.
It may or may not have been created on your system.

Working Environment 9-17

.logout

The C shell executes the .logout file in your home directory (if you have
created one) when you log off the system.

Execute files to modify current session

If you modify your .cshrc or .login files and you want them to take
effect in the current session, you must execute them with the source
command:

% source .cshrc

% source .login

This is explained in section 5.4 Shell Scripts.

9.8.2 Bourne Shell Family Fermi Files

The Bourne shell executes hidden FUE-customized files at various times in
your session. When you log on in the Fermi environment, the .profile
and .shrc files in your home directory are executed for sh, bash, and ksh.
Your .shrc file is also executed at any time a new bash or ksh is invoked.1

The name of the file .shrc is determined by the ENV environment variable
which is set to ~/.shrc in the standard .profile, it is not a standard
UNIX feature.

.profile and fermi.profile

The .profile file first executes
/usr/local/bin/fermi.profile. This file performs several actions:

• sets umask (default file access permissions) so others can read and
execute but not modify or delete your files

• sets up the machine id, type, and operating system

• establishes PATH (by running /usr/local/etc/setpath.sh) and

MANPATH.

• determines the terminal type

• sets a host of environment variables

• sets common terminal characteristics

1. On some of the more recent OS releases /bin/sh is a link (links are described in
section 7.3.5 Reference a file: ln) to the korn shell (ksh). ksh is a superset of sh, so
this shouldn’t present any problems for you. One difference is that your .shrc file
gets sourced when you run /bin/sh scripts.

9-18 Working Environment

You do not have a copy of fermi.profile in your home directory; it is
not designed to require individual customization.

The .profile file sets your prompt and the variables that govern your
history list, your default editor, and your command line editor. You can edit
your .profile to modify your path and/or terminal settings, change the
default values of variables1 or create your own, and/or include commands that
you want to execute once, at the beginning of each session (for instance
setup <product> commands).

.shrc and fermi.shrc

The .shrc file first executes /usr/local/etc/fermi.shrc which
sets up UPS and performs some machine-dependent functions.

The .shrc file should contain all your aliases2 so that child processes have
access to them; many suggested aliases are provided for you to activate, and
you can define your own. You can also set variables (noclobber and ignoreeof are
already set for you except in sh) and parameters that are local to a shell, and
you can activate and define functions.

Execute files to modify current session

If you modify your .shrc or .profile files and you want them to take
effect in the current session, you must execute them with the . command:

$. .shrc

$. .profile

This is explained in section 5.4 Shell Scripts.

9.8.3 Storing Customized Code

If you wish to maintain versions of distributed code customized to your own
needs, we recommend that you store them in the following directories:

$HOME/bin for machine-neutral code

$HOME/bin.$ARCH for architecture-specific code; $ARCH is the
value returned by funame -s (e.g., SunOS,
IRIX).

The path names for these directories will be added to your PATH when the
Fermi files are invoked.

1. Remember for sh, there is not really a difference between shell and environment vari-
ables; see section 9.5.
2. Aliases are available for bash and ksh, but not for sh; see section 9.7.2.

Working Environment 9-19

9.9 Multimedia File Support

Applications such as Web browsers and mail handlers need to be able to handle
files of many different types. The standard used for identifying multimedia file
types is called Multipurpose Internet Mail Extensions (MIME).

When a server sends a document to a client, it usually includes a section that
identifies the document’s type so that the file can be presented properly. The
identifier is called a MIME type, and consists of a general type (e.g., text,
image, application, audio, video) and a subtype which specifies the format.
These two elements are separated by a slash. Examples of MIME types are:

text/plain

text/html

image/jpeg

image/gif

application/postscript

A file called .mailcap1 is used to map MIME types to external viewer
programs, thus providing a recipe for displaying/playing multimedia files.
When you first run setup www (or setup
<your-favorite-browser> in a FUE environment, a default
.mailcap file gets created in your $HOME directory if it doesn’t already
exist. If an earlier version of the file is found, the terminal displays a message
saying that you can update it from the file in
$NETSCAPE_DIR/lib/TypeMap. For most situations, the .mailcap
file should be sufficient as provided.

Each entry in the .mailcap file consists of two fields separated by a
semicolon (;). The first field is the MIME type in the format
type/subtype. You may see asterisks used as wildcards to specify all of
the subtypes of a particular type (e.g., video/*). The second field specifies
the display command. It requires a full shell command, including the
pathname for the external viewer and any command line arguments. Some
examples of entries from the TypeMap file are:

image/xwd; display %s

image/x-xwd; display %s

image/x-xwindowdump; display %s

audio/*; sfplay %s

video/mpeg; mpeg_play %s

video/*; animate %s

application/postscript; ghostview %s

application/x-dvi; xdvi %s

application/pdf; xpdf %s

1. Its name refers to the fact that it was originally designed for multimedia mail, however
its role has since expanded, and will probably continue to do so as more and more pro-
grams become multimedia.

9-20 Working Environment

The %s is a printf-style parameter (see man printf) for the string
representing the filename.

Sometimes, if the MIME type is not sent in the file’s header, the multimedia
application displaying it needs to determine the file’s MIME type from its file
extension. In this case, the application references a file called mime.types
which provides the mapping between file extensions and MIME types. This
file is usually not required, and in fact a default mime.types file is not
even provided.

To add support for a new MIME type with an associated file extension, you
would need to create a mime.types file to provide the file extension
mapping, and then edit your .mailcap file to include an entry that maps the
new MIME type to an external viewer that can display the data.

For example, say you want to add support for MIME type application
with (fictional) subtype xyz. The files come with the extension xyzz,
viewable via the program viewxyz. You would need to create mime.types
and include the following line in it:

application/xyz xyzz

Note there is no semicolon (;) in a .mime.types entry. Then in
.mailcap, you would need an entry as follows:

application/xyz; viewxyz %s

